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Fluid forces acting on rectangular and octagonal cylinders oscillating without (a"0°) and with
(a"10°) a mean incidence were measured in a water channel. Experimentally determined force
coefficients and phase angles were compared to calculated coefficients determined using the
‘‘unsteady airfoil theory’’ and the ‘‘quasi-steady theory’’. The results showed that calculation of
the time-dependent lift force coefficient according to the quasi-steady theory can only be used at
low oscillation frequencies. While the quasi-steady theory does not account for fluid inertia, the
unsteady airfoil theory models the forces resulting from the cylinder acceleration and modifies
the lift force with a circulation function. Accordingly, unsteady airfoil theory may be applied to
a broader frequency range. One advantage of the unsteady airfoil theory is that, in addition to
the lift force, the phase angle between the lift force and cylinder displacement can be calculated.
By virtue of knowing this phase angle, the ranges of positive energy transfer from the fluid to the
cylinder can be determined and thereby the ranges of possible self-excited cylinder oscillations.
The limits to the applications of both the unsteady airfoil theory and the quasi-steady theory
were examined in detail and discussed with respect to oscillation frequency and amplitude.
Neither theory is capable of encompassing the instability-induced phenomena such as reson-
ance due to vortex shedding or phase jump. For rectangular and octagonal cylinders (prisms),
the influence of the oscillation amplitude was investigated in detail, through both experiments
and calculation, for several excitation frequencies of interest. One important result is that for
the rectangular cylinder oscillating at a constant frequency, the direction of energy transfer
between the fluid and the cylinder appeared to change as a function of oscillation amplitude.
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1. INTRODUCTION

FOR A RECTANGULAR OR AN OCTAGONAL CYLINDERoscillating transversely in a free stream (with
no turbulence), the relevant parameters, are the nondimensional oscillation frequency, S

e
,

and the amplitude of oscillation, gL , besides the Reynolds number, Re, and the angle of
attack, a. S

e
is defined as f

e
D/», where f

e
is the cylinder excitation frequency, D, the cylinder

thickness, and » the free-stream velocity; gL is defined as yL /D, where yL is the magnitude of
oscillation amplitude. In a previous paper (Deniz & Staubli 1997), we presented measure-
ments with varying oscillation frequency, S

e
, and also addressed features of the flow field as
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well as the formation of vortices at the leading- and trailing edge of the cylinders through
flow visualization. The chosen oscillation frequency range (S

e
"0—0)6) allowed us to

investigate effects of movement-induced excitation (MIE) instability-induced excitation
(IIE), and fluid inertia.

If linearity is not assumed, gL , the amplitude of oscillation, becomes the second important
parameter to be considered, besides the oscillation frequency. The influence by the oscilla-
tion amplitude on the flow field and the forces on oscillating cylinders are less investigated
than the influence by the oscillation frequency. Visualization of the flow field around
a transversally oscillating circular cylinder by Griffin & Ramberg (1974) shows a well-
organized vortex shedding with enhanced vortices for an oscillation amplitude gL "0)5, and
an oscillation frequency near the natural vortex-shedding frequency. The increase in
oscillation amplitude to gL "1 at the same oscillation frequency leads to a disorganization of
vortex shedding in the wake of the circular cylinder. Blevins (1990) called this phenomenon
self-limitation of the vortex-induced excitation as a result of the increase in the oscillation
amplitude. Williamson & Roshko (1988) describe in detail the nonlinear interactions and
modification of the flow field about a circular cylinder, depending not only on the
oscillation frequency but also on the oscillation amplitude.

In the second part of this paper we present fluid force and phase angle measurements on
rectangular and octagonal cylinders with varying oscillation amplitude at selected oscilla-
tion frequencies without (a"0°) and with a mean incidence (a"10°).

A series of mathematical models have been proposed in an attempt to simulate and/or
explain the observed experimental phenomena and results of flow-induced oscillations.
Detailed overviews are provided, for example, by Dowell et al. (1989), Parkinson (1989), and
Naudascher & Rockwell (1994). The most widely used mathematical model for predicting
the MIE (Movement-Induced Excitation) of cylinders is the quasi-steady theory (QST) of
Parkinson (Parkinson & Brooks 1961; Parkinson & Smith 1964). Quasi-steady theory is
generally applied to predict the galloping oscillation of a square-section cylinder, for
instance, at low-oscillation frequencies. The term galloping is usually applied to the large-
amplitude, low-frequency oscillations of bluff profiles (Parkinson 1971). Characteristic of
profiles sensitive to galloping oscillations are the negative lift-curve slopes as first described
by Den Hartog (1956). On the other hand, for oscillating airfoils, Bisphlinghoff et al. (1957)
calculated lift forces according to unsteady airfoil theory (UAT). Unlike quasi-steady theory,
unsteady airfoil theory allows estimates of fluid inertia forces and of shed vorticity.
Estimation of fluid inertia is especially important for very high oscillation frequencies,
where inertia effects dominate the flow field.

Following a short survey of different mathematical models, quasi-steady theory and
unsteady airfoil theory will be applied to oscillating rectangular and octagonal cylinders in
the first part of this paper. By using these models, the lift force, C

L
, and the phase angle, H,

between C
L

and cylinder displacement, y, are calculated. Comparison between the results of
these calculations and experimental data allows to determine the range of the validity of the
models investigated.

2. MATHEMATICAL MODELLING AND CALCULATION OF
FLOW-INDUCED OSCILLATIONS

The oscillation (motion) of a structure in a flow is most often presented as that of a rigid
cylinder in cross-flow, with discrete mass, viscous-type damping and a linear spring support
for simplicity. Therefore, the equation of the motion becomes

mÿ#ByR #Cy"F
L
(t), (1)
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where y is the cylinder displacement, m the cylinder mass, B the damping, C the stiffness,
and F

L
the fluid load. F

L
can be written as

F
L
(t)"1

2
oA»2C

L
(t), (2)

where C
L
(t) is the nondimensional coefficient of the lift force, o the fluid density, and A the

area (length]span) of the cylinder.
In this generalized form, equation (1) can be employed to describe the response of

cylinders to any type of fluid-dynamic excitation. Equation (1) can be solved, if information
is available on C

L
(t). C

L
(t) can be modelled as a nonlinear function of dy/dt (the quasi-

steady theory of galloping), or is regarded as being itself governed by an additional coupled
nonlinear differential equation [the fluid oscillator theory of Hartlen & Currie (1970) for
vortex-induced oscillations]. Furthermore, for the calculation of C

L
(t), flow field models can

also be used [meaning the solution of the time-dependent Navier—Stokes equations (Franke
1991; Tamura & Kuwahara 1992) or using a linearized potential flow theory (Kármán
& Sears 1938) or a discrete-vortex model (Sarpkaya 1989)].

In this paper two different models will be used, to be described in Sections 2.1 and 2.2.

2.1. THE QUASI-STEADY THEORY

At low oscillation frequencies (S
e
P0) quasi-steady conditions should hold between lift force

and yR :

C
L
"f A

yR
»B with a"tan~1A

yR
»B. (3)

Quasi-steady theory is based on the mean force curves measured at a stationary cylinder. It
should be noted that, for galloping calculations, the transverse fluid force, C

y
, is used

according to quasi-steady theory instead of the lift force, C
L
, because the quasi-steady

instability criterion according to Den Hartog (1956) is defined by

dC
y

da
"

dC
L

da
#C

D
(0, (4)

where C
L

and C
D

are the lift and drag coefficient, respectively, and C
y
is the transverse fluid

force coefficient (C
y
"C

L
for a"0°).

Quasi-steady theory assumes that at any instant during an oscillation cycle the cylinder
experiences the same force, C

y
, as it would if held stationary at an angle of attack, a, and

subject to a relative flow velocity, »
3%-

. The relative flow velocity, »
3%-

, arising from the
transverse cylinder velocity, dy/dt, can be expressed from the velocity triangle as follows:

»
rel
"J»2#(dy/dt)2. (5)

Consequently, according to quasi-steady theory, the instantaneous excitation force acting
on the oscillating cylinder is assumed to be equal to the stationary force evaluated at the
instantaneous angle of attack a, provided that the cylinder velocity dy/dt is small compared
to the incoming flow velocity » (in other words, provided S

e
is sufficiently small).

The required input for the quasi-steady theory is given by the measurement of the force
coefficient, C

y
, as a function of angle of attack, a, on the stationary rectangular and

octagonal cylinders (Figure 1). The experimental variation of C
y
versus a can be represented

by an odd power polynomial,

C
y
(a)"A

1
(a)!A

3
(a)3#A

5
(a)5!A

7
(a)7; (6)



Figure 1. Transverse fluid force curves of the nonoscillating (a) rectangular and (b) octagonal cylinder with
polynomial approximations for Re"105; gL "0, S

e
"0.
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with a"arc tan [(dy/dt)/»], from equation (6) it follows that

C
yA

yR
»B"A

1A
yR
»B!A

3 A
yR
»B

3
#A

5A
yR
»B

5
#A

7A
yR
»B

7
. (7)

2.2. THE UNSTEADY AIRFOIL THEORY

In 1935, Theodorsen presented a potential-flow theory defining the lift and moment
experienced by a flat plate, undergoing a small amplitude oscillation (via linearization) in
a uniform incompressible flow. Later, for an airfoil oscillating transversely in incompress-
ible flow, Bisplinghoff et al. (1957) showed that the lift force per unit span induced by
oscillation motion is given by

F
L
"F

L1
#F

L2
"!jonA

¸

2B
2
ÿ!o»

¸

2

LC
L

La
C(k) y5 , (8)



OSCILLATING RECTANGULAR AND OCTAGONAL PROFILES 863
where j is the added mass or flow inertia coefficient, » the incoming flow velocity, LC
L
/La

the lift-curve slope (LC
L
/La"2n theoretically for a diminishingly thin boundary layer and

wake), k the reduced circular frequency (that is equal to 2nS
e
), and C(k)" F(k)#iG (k) is

the complex Theodorsen’s circulation function.
For the idealized flow theory, the lift force depends on the circulation of the fluid around

an airfoil which in turn is determined by satisfying the Kutta condition at the trailing edge.
In the case of unsteady motion, however, the airfoil motion changes the circulation around
it and the lift is no longer a simple function of the circulation. The change in circulation is
accompanied by vortex shedding from the trailing edge. In addition, the nonuniform
motion or acceleration of the fluid particles around the airfoil gives rise to fluid dynamic
inertia forces (Brar et al. 1996).

F and G are the real and imaginary portions of C (k) and they are functions of the reduced
frequency as shown in Figure 2. C(k) may be expressed in terms of modified Hankel
functions of the first and second kind of order zero and one:

C(k)"
H(2)

1
(k)

H(2)
1

(k)#iH(2)
0

(k)
with k"u

%
D/»"2nS

e
. (9)

Substituting C(k)"F(k)#iG (k) into equation (9) leads to

F
L
"!jonA

¸

2B
2
ÿ!o»

¸

2

LC
L

La
F (k)y5 #o»

¸

2

LC
L

La
G(k) uy. (10)

With the fluid dynamic (or added) mass, A@, fluid-dynamic damping, B@, and fluid-
dynamic rigidity, C@, equation (10) has the form of body oscillators [cf. equation (1)]:

F
L
"!A@ÿ!B@yR !C@y. (11)

The decomposition of the total lift into components relies on linear assumptions allowing
the superposition. The first component in equation (8), F

L1
, is the noncirculatory term

(owing to its independence from » ) which is recognized as the fluid inertia force. The second
term, F

L2
, represents the effect of flow circulation about the body. For an airfoil oscillating

transversely to a free stream, the lift force acting on the airfoil, hence the circulation around
it, varies continuously. In order to satisfy Kelvin’s circulation theory (D!/Dt"0), vorticity
must be shed by the airfoil and the shed vorticity, !, remains conserved. The vorticity shed
can affect the flow around the airfoil, and thus the lift force acting on it in terms of
magnitude and phase (Luo & Bearman 1990). The Theodorsen function is a complex
function and, therefore, a phase angle H between lift and displacement of the body results.

It should be noted that the unsteady airfoil theory, which will be applied to oscillating
rectangular and octagonal cylinders, was originally derived to describe fluid forces on thin
airfoils oscillating with small amplitudes. However, it also allows to make estimates of
inertia and shed vorticity for bluff bodies as demonstrated by Luo & Bearman (1990),
Matsumoto et al. (1995), and Matsumoto (1971) for the prediction of the lift force and phase
angle on a transversely oscillating square-section cylinder. The Theodorsen function and
unsteady airfoil theory are widely used for stability analysis and estimation of the lift and
the moment experienced by profiles undergoing flutter oscillations. Two typical areas,
where unsteady airfoil theory is applied, are flutter oscillations of airfoils and turbo-
machinery blades, as well as bridge decks. Since most bridge-deck profiles are relatively
bluff, having flow separation around them, unsteady airfoil theory appears not to be an
appropriate tool for the bridge-flutter problem. On the other hand, unsteady airfoil theory



Figure 2. Theodorsen function, C(k)"F(k)#iG(k).
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is used to obtain flutter derivatives and force coefficient gradients of bridge-deck profiles,
successful and failed examples for which can be found in the open literature [e.g. Scanlan
& Tomko (1971), Scanlan et al. (1974), and a general overview incorporating several
examples by Försching (1974)].

In the following analysis, we only examine the component of the lift force F
Le

at the
excitation frequency S

e
. Substituting the harmonic motion of the body y"yL cosut and its

derivatives into equation (10), we obtain

F
Le
"F

Le1
#F

Le2
"CjonA

¸

2B
2

u#o»
¸

2

LC
L

La
G(k)D (ŷu cosut)#Co»

¸

2

LC
L

La
F (k)D

]( ŷu sinut). (12)
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F
Le1

and F
Le2

can be written in a nondimensional form as

C
Le1

"

F
Le1

!onA
¸

2B
2

ÿ

"

[jon(¸/2)2u#o» (¸/2) (LC
L
/La)G(k)] (ŷu cosut)

!on(¸/2)2 (!ŷu2 cosut)
, (13)

C
Le1

"j#
LC

L
La

G(k)
1

2nk
, (14)

C
Le2

"

F
Le2

1
2
o¸»2

"

o» (¸/2) (LC
L
/La)F (k) ŷu sinut

1
2
o¸»2

, (15)

with

tan â"
yRK
»

"

2n f
e
ŷ

»

"2n
ŷ

D

f
e
D

»

"2ngL S
e
, (16)

C
Le2

"

LC
L

La
F (k) tan â sin ut, (17)

C
Le2

"CK
Le2

sinut. (18)

Equation (8) can also be written in a nondimensional form:

C
Le
"

F
Le

1
2
o¸»2

"

F
Le1

#F
Le2

1
2
o¸»2

"

!C
Le1

onA
¸

2B
2
ÿ#C

Le2
o¸

»2

2

1
2
o¸»2

, (19)

C
Le
"!C

Le1
nA

¸

2B
1

»2
ÿ#C

Le2
. (20)

Substituting C
Le2

from equation (17) into equation (20) and using the fact that ¸"2D for
a rectangular cylinder, equation (20) becomes

C
Le
"C

Le1
2n2 tan aL S

e
cosut#

LC
L

La
F (k) tan aL sinut. (21)

We can also use a harmonic assumption for the lift component at the excitation
frequency, C

Le
:

C
Le
"CK

Le
cos(ut#H), (22)

C
Le
"CK

Le
cosH cos ut!CK

Le
sinH sin ut. (23)

From equations (21) and (23), we have

CK
Le

cosH"C
Le1

2n2 tan aL S
e
,

CK
Le

sinH"!

LC
L

La
F (k) tan aL . (24)

The magnitude of the lift component at the excitation frequency becomes

CK
Le
"S(C

Le1
2n2 tan aL S)2#A

LC
L

La
F(k) tan aL B

2
, (25)
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and the phase shift between the lift component and the body motion

H"tan~1 C
!(LC

L
/La) F(k)

2C
Le1

n2S
e
D , (26)

with

C
Le1

"j#
1

2nk

LC
L

La
G(k). (27)

A few observations can be made from equations (25)—(27). First, in equation (26) the sign
of the slope of the lift curve, LC

L
/La, determines the range of phase angle and thus

the direction of energy transfer between the fluid and the cylinder. Second, the calculation of
the magnitude of the lift force, CK

Le
, in equation (25) takes both the oscillation frequency

(with the terms S
e

and tan aL ) and the oscillation amplitude (with the term tan â) into
account. On the other hand, the calculation of the phase angle according to unsteady airfoil
theory in equation (26) is independent of the oscillation amplitude. Finally, the noncircula-
tory part of the lift force, C

Le1
, in equation (27) contains the flow inertia coefficient, j, and an

additional term (1/2nk) (LC
L
/La) G(k). This additional term modifies the potential flow

inertia coefficient and is, therefore, called the ‘‘added inertia coefficient’’ by Luo & Bearman
(1990).

The nondimensional added mass (or flow inertia) coefficient, j, is defined by the added
mass formulation, which gives the relationship between lift force and cylinder acceleration,
ÿ, i.e.

F
L!$

"!jonA
¸

2B
2
ÿ; (28)

j can be determined from the potential flow theory and/or experiment at zero flow
conditions (oscillation in a still fluid). The added mass coefficients for the profiles investi-
gated were calculated by Groh (1992). They are j

R
"1)36 for the rectangular cylinder, and

j
O
"1)103 for the octagonal cylinder. The added mass calculation is also useful to check the

validity of mathematical models for S
e
PR.

3. EXPERIMENTS

The experimental facility is described in Deniz & Staubli (1997); further details can be found
in Deniz (1993) and Staubli (1983).

For the investigations with oscillating cylinders, the data are presented as a function of
the nondimensional oscillation frequency, S

e
, and the relative oscillation amplitude, ĝ.

During the experiments the nondimensional oscillation frequency was varied for the
octagonal cylinder up to S

e
"0)55 and for the rectangular cylinder up to S

e
"0)26, while

the relative amplitude of oscillation up to ĝ+2, depending on the oscillation frequency.
The maximum oscillation amplitude investigated becomes smaller with increasing oscilla-
tion frequency, because of the limited capacity of the experimental facility. Measured values
of externally excited lift coefficient, CK

Le
, will be normalized with the relative oscillation

amplitude, ĝ, and plotted as CK
Le

/gL in Figures 3—6.

4. RESULTS

4.1. VALIDATION OF THE MATHEMATICAL MODELS

For the rectangular and octagonal cylinders investigated, Figure 1(a,b) shows both the
nondimensionalized forces acting on the stationary cylinders for varying angle of attack, a,



Figure 3. Normalized lift coefficient CK
Le

/gL of the (a) rectangular cylinder and (b) octagonal cylinder for different
oscillation amplitudes, gL , as a function of the dimensionless oscillation frequency, S

e
, for Re"105 and a"0°;

comparison of experiment with the quasi-steady theory and the unsteady airfoil theory.
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and also the polynomial approximations of these experimental C
y

curves. The change in
sign of LC

y
/La for the rectangular cylinder at a+6° is caused by the reattachment of flow

on one side of the cylinder, whereas for the octagonal cylinder at a+8° the change is caused
by the upstream shifting of flow separation from the trailing edge on one side of the profile
with increasing angle of attack [as discussed in Deniz & Staubli (1997)].

The polynomial coefficients A
i
, [equation (6)] which gave best fit to the experimental

data for incidence !12°(a(12° are displayed in Table 1. The slopes LC
y
/La at a"0°

and a"10°, extracted from the data of Figure 1, are also shown in the same table.
In Figures 3—6, the experimental data which are taken for varying excitation frequency,

S
e
, at three different oscillation amplitudes, gL , are compared to the results of the calculations

employing both the quasi-steady and the unsteady airfoil theory. (In Figures 3—6, the top



Figure 4. Phase angle H of the (a) rectangular cylinder and (b) octagonal cylinder for different oscillation
amplitudes gL as a function of the dimensionless oscillation frequency S

e
, for Re"105 and a"0°; comparison of

experiment with the unsteady airfoil theory (UAT).
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diagram, (a), shows results for the rectangular cylinder; the bottom diagram, (b), for the
octagonal cylinder.) The nondimensional instability frequencies, the frequency of wake
vortex formation (Kármán vortex-shedding frequency) S

0
, and frequency of impinging

vortices S*, are marked in Figures 3—6. S
0

and S* are obtained on stationary cylinders.
In Figure 3 the normalized lift coefficient CK

Le
/ĝ and in Figure 4 the phase angle

H between lift and displacement are plotted for oscillations with zero mean incidence
(a"0°). Since the unsteady airfoil theory assumes a linear relationship between the lift force
and the amplitude of oscillation, curves collapse into one single curve for different ampli-
tudes of oscillation, gL . The quasi-steady theory distinguishes three different curves with
respect to the three different amplitudes of oscillation. However, at low oscillation frequen-
cies (where the quasi-steady theory is only valid), the differences between three curves are
negligibly small.



Figure 5. Normalized lift coefficient CK
Le

/gL of the (a) rectangular cylinder and (b) octagonal cylinder for different
oscillation amplitudes, gL , as a function of oscillation frequency S

e
, for Re"105 and a"10°; comparison of

experiment with the unsteady airfoil theory (UAT).
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As far as the lift coefficients are concerned, the unsteady airfoil theory and the quasi-
steady theory agree well with each other for low oscillation frequencies (for the rectangular
cylinder S

e
(0)06; for the octagonal cylinder S

e
(0)08). The quasi-steady theory was

developed to predict galloping oscillations which occur at low frequencies (S
e
(0)05). In

this low oscillation-frequency range, agreement between calculations and measurements is
good for both cylinders. For the rectangular cylinder deviation between calculation and
measurements starts at lower oscillation frequencies (S

e
+0)04), because the interaction

between Kármán vortex shedding in the wake and cylinder oscillation begins to dominate
the force coefficient. It should be noted that, for the rectangular cylinder, the Kármán vortex



Figure 6. Phase angle H of the (a) rectangular cylinder and (b) octagonal cylinder for different oscillation
amplitudes gL as a function of oscillation frequency S

e
for Re"105 and a"10°; comparison of experiment with the

unsteady airfoil theory (UAT).

TABLE 1

The polynomial coefficients A
i
and values of LC

y
/La

Profile A
1

A
2

A
3

A
4

LC
y
/La LC

y
/La

(a"0°) (a"10°)

Rectangular cylinder !5)75 !42)4 11 000 187 000 !4)85 6)32
Octagonal cylinder 3)85 !120)7 !8760 !112 255 4)62 !3)34

870 S. DENIZ AND T. STAUBLI
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shedding frequency is S
0
"0)078, which is smaller than that for other elongated profiles (see

for comparison Deniz & Staubli 1997). Therefore, resonance with Kármán vortex-shedding
frequency affects lift coefficients at lower oscillation frequencies, where galloping oscilla-
tions may usually occur and the quasi-steady theory is applicable.

The upper bound of oscillation frequency, at which the quasi-steady theory is valid, is not
theoretically obtainable, but as suggested both in Figure 3(a) and in experiments by
Nakamura & Mizota (1975), the upper bound is associated with vortex shedding. When the
vortex resonance frequency is approached, interaction between galloping and vortex
excitation takes place. This subject was investigated by Bearman et al. (1987) for an
oscillating square-section cylinder. Vortex excitation occurs within a certain range of
oscillation frequency, at which the instability frequency such as Kármán vortex-shedding
frequency coincides with the oscillation frequency of the cylinder. In the case of the
rectangular cylinder, a broad frequency range exists, where vortex interaction occurs and
instability-induced phenomena, such as wake vortex shedding and impinging vortices,
dominate the flow field and the fluid forces. Neither theory is valid in this frequency range.
However, for high oscillation frequencies (S

e
'0)25), where the fluid inertia forces domi-

nate, there is decent agreement between the results obtained by the unsteady airfoil theory
and measurements [Figure 3(a)]. Compared to the rectangular cylinder, the lift amplifica-
tion due to vortex resonance is small for the octagonal cylinder and also occurs in a very
narrow frequency range. Therefore, the prediction of lift coefficients of the octagonal
cylinder with the unsteady airfoil theory agrees with the experimental data in a broad
frequency range [Figure 3(b)].

The phase angle H determines the direction of energy transfer between the fluid and the
oscillating cylinder. Accordingly, an elastically mounted cylinder would undergo self-
excited oscillations for the ranges of oscillation frequencies and amplitudes where energy
transfer occurs from the fluid to the cylinder. These ranges are explicitly shown in all phase
graphs. According to the quasi-steady theory, the phase angle H is n/2"90° and remains
constant (corresponding to 2n#n/2"450° for the figure of the rectangular cylinder) in
which C

Le
is assumed to be in phase with dy/dt for all flow velocities. The measurements

show a progressive approach to the quasi-steady phase angle condition for very low
oscillation frequencies (Figure 4). For oscillations without a mean incidence (a"0°),
calculations of phase angle according to the unsteady airfoil theory always show
energy transfer from the fluid to the cylinder for the rectangular cylinder, while in the
opposite direction for the octagonal cylinder. This is expected, because in the vicinity of
a"0°, for the rectangular cylinder LC

y
/La is negative, and for the octagonal cylinder LC

y
/La

is positive. The experimentally determined phase curve of the rectangular cylinder
shows steep gradients and changes, such as a phase jump due to instability-induced
phenomena. Such phase jumps are inherent to vortex interactions, observed in many
different types of cylinders, but obviously these jumps cannot be predicted by unsteady
airfoil theory. According to Figure 4(a), unsteady airfoil theory can only estimate the phase
angle for low oscillation frequencies, where movement-induced galloping oscillations occur
for the rectangular cylinder at a"0°. On the other hand, phase-angle curves of the
octagonal cylinder do not show big changes with varying oscillation frequency and
amplitude due to the instability-induced phenomena, as seen in Figure 4(b). Therefore,
unsteady airfoil theory predicts well the experimental data for phase angle of the octagonal
cylinder at a"0°.

For the case of oscillations with a mean incidence of a "10°, the predictions according
to unsteady airfoil theory are shown in Figures 5 and 6, together with the experimental
results. In Figure 5(a), for the rectangular cylinder, unsteady airfoil theory is only capable of
predicting the trend of the experimentally measured lift curve at low and high frequencies.
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In the frequency range where the frequency of oscillation is close to the cylinder vortex-
shedding frequency S

0
, unsteady airfoil theory cannot be used. For the CK

Le
/gL curve of the

octagonal cylinder in Figure 4(b), agreement between the experimental results and the
unsteady airfoil theory is better, because no effects of instability-induced phenomena on
the lift force occur for the octagonal cylinder.

For the rectangular cylinder, unsteady airfoil theory predicts the trend of the curves of the
phase angle for a "10° [Figure 6(a)]. Again, the phase jump is not predictable by this
theory. Except for the range of the phase jump, unsteady airfoil theory estimates the
direction of the energy transfer correctly for the rectangular cylinder at a"10°. Unfortu-
nately, this is not true for the phase angle prediction in the case of the octagonal cylinder in
Figure 6(b) for a"10°. The reason for this difference is that unsteady airfoil theory requires
the slope of the C

L
-curve at a"10° for prediction of the phase angle—see equation (26).

LC
L
/La is slightly negative for a"10° and therefore the prediction of phase angle, which

does not agree with the experimental data, indicates an energy transfer from the fluid to the
cylinder. The case of the octagonal cylinder for a"10° is a unique case, where Den
Hartog’s instability criterion is not satisfied. According to Den Hartog’s instability criterion
(LC

y
/La(0), galloping oscillations may occur for the octagonal cylinder at a"10°, due to

the slightly negative slope of the C
y
versus a curve in this range. Phase angle measurements

of the octagonal cylinder in Figure 6(b) do not indicate any region where energy transfer
occurs from the fluid to the cylinder, and therefore no galloping oscillations occur for
a"10°. In several published investigations, Novak showed that quasi-steady theory is in
good agreement with the experimental results for galloping oscillations of bluff cylinders.
Moreover, Novak tested Den Hartog’s instability criterion for different types of cylinders.
In many practical cases, examination of Den Hartog’s instability criterion alone suffices to
assess proclivity of a structure to galloping, even though the phenomena are, in fact,
strongly nonlinear. Novak (1972) identified various forms of C

y
(a) curves and the trends of

the corresponding galloping response amplitudes, each as a function of the reduced velocity
parameter »

r
"1/S. There exist situations (e.g., for a rectangular cylinder with the length

ratio of ¸/D"0)5), wherein galloping oscillations take place, even though Den Hartog’s
instability criterion (LC

y
/La(0) is not satisfied.

Lift force predictions according to the unsteady airfoil theory require the calculation of
the added mass or flow inertia coefficient, j. Using the added mass coefficients given in
Section 2, forces, which were calculated for the cases with zero incidence (a"0°) and for
a mean incidence of a"10°, are compared with the forces acting on the cylinder in a still
fluid (no flow, »"0). Calculated and measured lift forces due to added mass agree well,
except for very high oscillation frequencies. For oscillations in a still fluid, a phase angle of
0° is expected, as experimentally confirmed at the low oscillation frequencies, whereas for
the high frequencies, measured phase angles deviate a few degrees from 0° and become
negative (Deniz 1993).

4.2. INFLUENCE OF THE OSCILLATION AMPLITUDE

The effects of nonlinearity in response to the amplitude of oscillation are the greatest in the
range of vortex synchronization frequencies; see Figures 3—6. Especially the oscillation
frequency, where a phase jump occurs, the width of vortex resonance range and the
maximum lift coefficients in this range depend on the amplitude of oscillation. The
maximum value of the oscillation amplitude investigated has been until now ĝ"0)30. In
practice, particularly, in the case of galloping oscillations, the amplitude of the oscillation
can be higher. For this reason, selected frequencies were investigated with higher amplitudes
of oscillation, as shown in Figures 7—9 for the rectangular and octagonal cylinders, and both



Figure 7(a) Lift coefficient CK
Le

of the rectangular cylinder for different oscillation frequencies, S
e

(I—VI) as
a function of the dimensionless oscillation amplitude gL , for Re"105 and a"0°; comparison of experiment with

the quasi-steady (QS) theory and the unsteady airfoil (UA) theory.
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without (a"0°) and with (a"10°) a mean incidence. In Figures 7—9 data are shown for six
constant excitation frequencies S

e
, although more excitation frequencies were investigated

in the course of this investigation (Deniz 1993). The six excitation frequencies presented in
Figures 7—9 were chosen such that one low frequency is in the galloping range, four
frequencies are near the frequency of Kármán vortex shedding, S

0
, and near the frequency of

impinging vortices, S*, and one very high frequency is in the range of added mass.
For a"0°, both CK

Le
and H, predicted by the unsteady airfoil theory and the quasi-steady

theory, are also included in Figure 7 (for the rectangular cylinder) and Figure 8 (for the
octagonal cylinder). In Figures 7—9 the different excitation frequencies investigated are
numbered with Roman numerals (I—VI), and the values for the relevant parameters such as
the nondimensional excitation frequency, S

e
, and reduced velocity »

re
"1/S

e
are given.



Figure 7(b) Phase angle H of the rectangular cylinder for different oscillation frequencies S
e
(I—VI) as a function

of the dimensionless oscillation amplitude, gL , for Re"105 and a"0°; comparison of experiment with the unsteady
airfoil (UA) theory.
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Lift force coefficients CK
Le

, determined by the unsteady airfoil theory, increase linearly
with the amplitude of oscillation and agree well with the experimental data for the lowest
(S

e1
"0)028, in the galloping range) and highest (S

e6
"0)257, in the added mass range)

frequencies investigated in Figure 7(a). For the other excitation frequencies, the unsteady
airfoil theory is capable of predicting only trends of the experimentally measured curves.
For the excitation frequencies near the frequency of Kármán vortex shedding (S

e2
"0)059

and S
e3
"0)078), the magnitudes of the lift forces are underestimated, whereas these forces

are slightly overestimated for the excitation frequencies near the frequency of impinging
vortices (S

e4
"0)154 and S

e5
"0)169). For the excitation frequencies near the frequency of

Kármán vortex shedding [Figure 7(a), II and III], the experimentally determined lift forces
increase rapidly below ĝ+0)5 and are nonlinear for small amplitudes. Above this oscilla-
tion amplitude (ĝ+0)5) the lift forces increase linearly.

Since the quasi-steady theory is a model for predicting low frequency galloping oscilla-
tions, it is only applicable to the lowest excitation frequency, S

e1
"0)028 investigated.

However, even at this lowest frequency, the quasi-steady theory loses its validity with
increasing amplitude of oscillation above ĝ'0)6 [Figure 7(aI)].



Figure 8(a) Lift coefficient CK
Le

of the octagonal cylinder for different oscillation frequencies S
e

(I—VI) as
a function of oscillation amplitude, gL for Re"105 and a"0°; comparison of experiment with the quasi-steady

(QS) theory and the unsteady airfoil (UA) theory.
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The phase angle curves of the rectangular cylinder for a"0° are depicted in Figure 7(b).
Both for the frequencies near the frequency of Kármán vortex shedding (S

e2
"0)059 and

S
e3
"0)078) and the highest frequency (S

e6
"0)257), the phase angle is almost constant

(except for very small oscillation amplitudes), and the energy transfer is from the cylinder to
the fluid. For the lowest excitation frequency, S

e1
"0)028 [Figure 7(bI)], which is in the

galloping range, a phase angle H'360° is observed for low oscillation amplitudes.
Therefore, the energy transfer is from the fluid to the cylinder, explaining the galloping
excitation of the rectangular cylinder for a"0°.

When a cylinder oscillates in a direction transverse to the free stream, its angle of attack
a varies continuously; therefore the magnitude of â is related to ĝ and S

e
, as defined in

â"tan~1 [yRK /»]"tan~1[2ngL S
e
]. For ĝ+0)6 at S

e1
"0)028 [Figure 7(bI)], where the

energy transfer changes sign, a magnitude of â"6° is calculated. This corresponds to the
value of a where the stationary C

y
versus a curve [Figure 1(a)] also changes its sign. For

a(6°, galloping excitation is to be expected, because LC
y
/La is negative. From a'6°,

LC
y
/La is positive, and that means (according to Den Hartog’s instability criteria) no

galloping excitation occurs in this range. Since the energy transfer is from the cylinder to the



Figure 8(b) Phase angle H of the octagonal cylinder for different oscillation frequencies, S
e
(I—VI) as a function

of oscillation amplitude gL , for Re"105 and a"0°; comparison of experiment with the unsteady airfoil (UA)
theory.
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fluid for ĝ'0)6 [in Figure 7(bI)], the phase angle curve confirms Den Hartog’s instability
criterion at the excitation frequency S

e1
"0)028 for the rectangular cylinder.

Phase angle curves for the excitation frequencies near the frequency of impinging vortices,
S*, (S

e4
"0)154 and S

e5
"0)169) show similar behavior. For these frequencies, a strong

dependence on the oscillation amplitude, ĝ, and a change in the sign of the energy transfer as
a function of the oscillation amplitude both occur together.

Above a certain value of the oscillation amplitude, the phase angle remains constant for
almost all frequencies investigated in Figure 7(b), implying a limited influence of the
oscillation amplitude. In addition, the flow-induced oscillations at a particular oscillation
frequency are also limited because, above a certain oscillation amplitude level, the phase
angle always shows an energy transfer from the cylinder to the fluid. Prediction of the phase
angle by the unsteady airfoil theory does not take the influence of the oscillation ampli-
tude into consideration [see equation (26)] and therefore provides constant values of phase



Figure 9(a) Lift coefficient CK
Le

of the rectangular cylinder for different oscillation frequencies, S
e

(I—VI) as
a function of oscillation amplitude, gL for Re"105 and a"10°; comparison of experiment with the unsteady airfoil

(UA) theory.
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angle. The unsteady airfoil theory gives phase angles 0(H(n (or 2n(H(3n) for the
rectangular cylinder, because LC

L
/La is negative for a"0°. Thus, the predicted phase angle

ranges always show an energy transfer from the fluid to the cylinder, which agrees with
the experimental data only for the lowest excitation frequency, S

e1
"0)028, in the galloping

range and up to ĝ"0)5. For the other cases investigated, the unsteady airfoil theory is not
usable for phase angle predictions of the rectangular cylinder for a"0°.

On the other hand, for the octagonal cylinder at a"0°, where no galloping excitation
occurs and the influence of vortex-induced phenomena is small, the predictions of both lift
force C

Le
and phase angle H by the unsteady airfoil theory agree well with the experimental

data. The measured C
Le

values increase linearly with the amplitude of the oscillation
[Figure 8(a)] and the measured phase angles remain almost constant for all excitation
frequencies investigated. Again, an agreement between predictions by the quasi-steady
theory and measurements exists only at the lowest excitation frequency, S

e1
"0)028

[Figures 8(aI) and 8(bI)] both for phase angle (H"!90°) and for C
Le

(up to ĝ+0)8).



Figure 9(b) Phase angle H of the rectangular cylinder for different oscillation frequencies, S
e
(I—VI) as a function

of oscillation amplitude, gL , for Re"105 and a"10°; comparison of experiment with the unsteady airfoil (UA)
theory.
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For the rectangular cylinder with a mean incidence (a"10°), the lift force coefficients,
C

Le
, and phase angles, H, are displayed in Figure 9(a, b) at different excitation frequencies.

At the highest frequency investigated, S
e6
"0)257, the lift force coefficient increases linearly

with the oscillation amplitude, and the phase angle is nearly constant. Predictions of both
the lift coefficient and phase angle by the unsteady airfoil theory agree well with the
experimental data for this frequency. The same observation is valid for the lowest excitation
frequency, S

e1
"0)028, except that the unsteady airfoil theory underestimates the experi-

mental lift coefficient. The frequencies in between (S
e3
"0)118, S

e4
"0)132, S

e5
"0)143,

and partly S
e2
"0)078) show similar trends of the experimentally determined lift coefficients

as a function of the oscillation amplitude [Figures 9(aII)—(9aV)]. An increase in the lift
coefficient for small oscillation amplitudes halts, corresponding to a range in oscillation
amplitude where the lift coefficients do not increase with increasing oscillation amplitude.
At the end of this range, lift coefficients continue increasing linearly with the oscillation
amplitude and are parallel to the predicted curves determined by the unsteady airfoil
theory. The turning point of the lift curve, which depends upon the excitation frequency,
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shifts to smaller oscillation amplitudes with increasing excitation frequency. For
S
e5
"0)143 [Figure 9(aV)] there is almost no increase in the lift coefficient at low oscillation

amplitudes. This excitation frequency of S
e5
"0)143 corresponds to a frequency range

where the lift coefficient develops a local minimum after a maximum due to a resonance at
the Kármán vortex frequency [see Figure 5(a)]. It is also in the frequency range of the phase
jump [see Figure 6(a)].

Similar minima for the lift coefficient in the range of phase jump were also observed by
Staubli & Rockwell (1989) for an oscillating trailing-edge and by Bearman & Luo (1988) for
the square-section cylinder. This lift minimum is caused by the reattachment of the flow on
one side of the square cylinder at this value of the angle of attack. Bearman & Luo (1988)
calculated the value for the angle of attack, â, in the range of minimum lift force coefficient
and compared it with the curve of the stationary lift force versus angle of attack. Similar
calculations of the value for angle of attack, â, for the rectangular cylinder do not show any
correlation between the minimum of the lift force and stationary lift force versus angle of
attack curve. The regions, where the lift coefficient shows large changes, depend on the
excitation frequency, as well as on the amplitude of oscillation, as seen in Figure 9(a). For
the excitation frequency S

e5
"0)143 [Figure 9(bV)], the phase angle curve exhibits a phase

jump as a function of oscillation amplitude. The abrupt change in the phase angle means
a change of the vortex formation in the near wake of the cylinder. Therefore, the large
changes in the lift coefficient in Figure 9(a) [and also Figure 5(a)] should be caused by the
formation of vortical structures at the leading- and trailing edge of the rectangular cylinder.
For a better understanding of this observed phenomenon in the case of the rectangular
cylinder for a"10°, visualization of the flow field is necessary. In a similar frequency range,
namely after the synchronization region with Kármán vortex shedding, flow visualization
for the rectangular cylinder for a"0° (Deniz & Staubli 1997) showed that major changes
occur in the wake with respect to the alternating vortex formation, causing the annihilation
of induced lift forces and local minima of lift coefficients.

5. REMARKS AND CONCLUSIONS

Parkinson’s quasi-steady theory predicts lift forces and flow-induced oscillations well for
low oscillation frequencies, as demonstrated by several authors through comparisons of
predictions with experimental results for cylinders of various shapes (especially for the
square-section cylinder). In the present investigation, the quasi-steady theory is used to
predict the lift forces for transversally oscillating rectangular and octagonal cylinders. The
limit of the quasi-steady theory is found at nondimensional oscillation frequencies of
S
e
(0)04 for the rectangular cylinder and S

e
(0)12 for the octagonal cylinder. The

quasi-steady theory has also limitations to its validity in the low-frequency range with
regard to the maximum amplitude of oscillation, ĝ.

The unsteady airfoil theory, which had been originally developed for the small amplitude
oscillations of airfoils and thin plates, was employed by Luo & Bearman (1990) for
a square-section cylinder. The agreement with the experiments reflects that the Theodorsen
function and lift curve slope values in the unsteady airfoil approach (that have been
obtained from stationary cylinders) can be used in predictions of the quasi-steady fluid
forces for low-frequency oscillations and of the inertia effects at high-frequency oscillations.

Besides inertia effects, an oscillating cylinder sheds motion-induced vortices. Such vortex
formation depends largely on the shape of the oscillating cylinder, i.e. reattachment may
occur. Obviously, predictions by the unsteady airfoil theory are better for slender profiles, as
confirmed by the two cylinders investigated, of which the octagonal one gives better
agreement.



880 S. DENIZ AND T. STAUBLI
The quasi-steady theory assumes that the phase angle, H, between the lift force and the
cylinder displacement at the excitation frequency has a constant value of $p/2, depending
upon the slope of the lift characteristic. Experimental results confirm this value of the
phase angle for very low oscillation frequencies. The unsteady airfoil theory includes phase
information about the resulting lift force, thereby giving quantitative information on
the energy transfer from the fluid to the cylinder. For the cases with positive energy transfer
from the fluid to the cylinder, self-excited cylinder oscillations are possible. The existence of
such a region for the rectangular cylinder both at a"0° and low oscillation frequencies,
indicates galloping excitation, and the unsteady airfoil theory is able to predict this case.
Another case, where the unsteady airfoil theory estimates the experimental trend of phase
angle and the energy transfer well, is the rectangular cylinder oscillating with a mean
incidence of a"10°, with the exception of the region of the phase jump.

For the octagonal cylinder investigated, where galloping instability is not observed and the
influence of instability-induced phenomena (such as vortex shedding) is small, the predictions of
the lift force as well as phase angle by unsteady airfoil theory agree well with the experimental
results in a broad range of oscillation frequency. In the case of oscillations at a mean incidence of
a"10°, the phase prediction is wrong in sign; this can be explained by the fact that Den
Hartog’s instability criterion fails for the octagonal cylinder at this mean incidence.

For the rectangular cylinder at intermediate values of oscillation frequency, S
e
, instabil-

ity-induced effects such as Kármán vortex-shedding and/or impinging vortices dominate
the flow field for oscillations without (a"0°) as well as with a mean incidence (a"10°).
Predictions are incorrect by either theory within these instability-influenced ranges. Re-
cently, Scanlan et al. (1996) have also demonstrated the failure of the Theodorsen circula-
tion function and the unsteady airfoil theory to account for the oscillatory lift of rectangular
profiles.

The investigation of linearity with increasing amplitude of oscillation, ĝ, was carried out
in the second part of this study for both the rectangular and octagonal cylinders at a"0°
and a"10°. In these experiments the amplitude of oscillation exerts a nonlinear influence
mainly in the frequency ranges of instability-induced phenomena. Therefore, for the octa-
gonal cylinder, linearity with the oscillation amplitude is found both in cases without and
with mean incidence.

On the other hand, the measured lift force and phase angle curves of the rectangular
cylinder show significant nonlinear dependence on the oscillation amplitude in the fre-
quency range of instability-induced phenomena, for both cases without (a"0°) and with
(a"10°) a mean incidence. However, the nonlinear influence of the oscillation amplitude is
limited to a certain maximum value. Above this limit oscillation amplitude, the lift forces
increase linearly, while the phase angle remains nearly constant. The important fact is that
for a constant excitation frequency the sign of the phase angle and therefore the direction of
energy transfer can change with oscillation amplitude.

One important design criterion for the octagonal cylinder is that it is less susceptible to
flow-induced oscillations. The lift-curve slope at a"0° is positive and no galloping
oscillations occur. In the overall oscillation frequency and amplitude ranges investigated,
the phase angle indicates energy transfer from the cylinder to the fluid. The amplification of
the fluctuating lift force due to Kármán vortex shedding in the wake is also very small. For
the case without incidence (a"0°), the flow separates at the leading edges, but reattaches
within a very short distance, remains attached to the side surfaces, and finally separates at
the trailing edges. Since the profile thickness at the trailing edge is smaller than the profile
thickness, D, the wake and the width of the Kármán vortex street are narrow. Another
reason for the small lift amplification due to Kármán vortex shedding is that sharp leading
edges decrease the periodicity of the vortex shedding. Due to sharp leading and trailing
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edges, the flow characteristics of the octagonal cylinder are also Reynolds-number-
independent.
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APPENDIX: NOMENCLATURE

A area of cylinder (length]span)
A@ fluid dynamic mass
B structural damping
B@ fluid dynamic damping
C structural rigidity
C@ fluid dynamic rigidity
C

D
drag coefficient

C
L

lift coefficient
C

y
transverse fluid force coefficient

C(k) Theodorsen function, C(k)"F(k)#iG (k)
D thickness of cylinder
f
e

excitation frequency (Hz)
F
L

lift force
F
L!$

lift force due to the fluid inertia or added mass
F(k) real part of Theodorsen function
G(k) imaginary part of Theodorsen function
H(2)

0
Hankel function of second kind of order 0

H(2)
1

Hankel function of second kind of order 1
k reduced frequency, k"uD/»
¸ length of cylinder
m mass of cylinder
Re Reynolds number, Re"»¸/l
S Strouhal number, S"fD/»
S
e

nondimensional excitation frequency, S
e
"f

e
D/»

S* nondimensional frequency of impinging vortices, S*"f*D/»
S
0

nondimensional frequency of wake vortex formation, S
0
"f

0
D/»

t time
» free-stream velocity
»

3%-
relative velocity

»
3%

reduced velocity, »
3%
"»/f

e
D

y displacement of cylinder
yR velocity of cylinder oscillation
ÿ acceleration of cylinder oscillation
a angle of attack
ĝ nondimensional amplitude of oscillation, ĝ"yL /D
# phase angle between cylinder displacement and lift force
j nondimensional flow inertia coefficient
l kinematic viscosity
o density of fluid
u angular frequency (rad/s)
' magnitude
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